If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-13=51
We move all terms to the left:
d^2-13-(51)=0
We add all the numbers together, and all the variables
d^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $
| 15-z=-45 | | 30=10n-5(n) | | 8x−3−2x=39 | | 8-5x=169 | | 12e=60 | | 3(3x-2)-5=45 | | 18=6(c-84) | | 19g-19g-13g-(-10g)=-15 | | (x)(2x+8)=192 | | u21=14 | | x2+12=14 | | -8=x-33 | | 12n+36=192 | | Y=(3x-7)/(5x-8) | | 8x5=35 | | d+224=531 | | v-89/9=1 | | 2×(x-4)+1=6x | | 5/24=3/8d | | n+55=82 | | n6=10 | | 6c+-14c-(-17c)-12c-(-13c)=-10 | | r-63/7=3 | | 2x+0.33x-10=4 | | 12=(a-2)3 | | x2-6=-8 | | r-26/7=3 | | 9z-(-11z)+-18z-9z=-7 | | 169=-5(7+6n)-6 | | 4x−3=3x+3 | | 4x+10+6x=30 | | 8y+48=-40 |